
Synthesis and Antibacterial Activity of Novel Series of 2-(*p*-Tolyloxy)-3-(5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl)quinoline

Ratnadeep S. Joshi,^a Priyanka G. Mandhane,^a Wajid Khan,^b and Charansingh H. Gill^a*

^aDepartment of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, India ^bDepartment of Microbiology, Maulana Azad College, Aurangabad 431 210, India *E-mail: chgill50@yahoo.com Received February 15, 2010 DOI 10.1002/jhet.653 Published online 15 April 2011 in Wiley Online Library (wileyonlinelibrary.com).

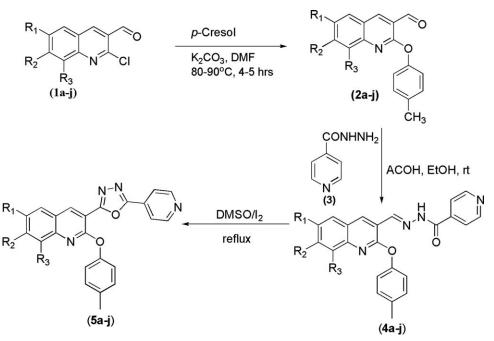
A new series of 2-(*p*-tolyloxy)-3-(5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl)quinoline were synthesized from oxidative cyclization of N'-((2-(*p*-tolyloxy)quinoline-3-yl)methylene)isonicotinohydrazide in DMSO/I₂ at reflux condition for 3–4 h. The structures of the new compounds were confirmed by elemental analyses as well as IR, ¹H-NMR, and mass spectral data. All the synthesized compounds were screened for their antibacterial activities against various bacterial strains. Several of these compounds showed potential antibacterial activity.

J. Heterocyclic Chem., 48, 872 (2011).

INTRODUCTION

Quinoline ring systems represent a major class of heterocycles as they occur in various natural products especially in alkaloids [1]. It possesses diverse biological and physiological activities such as antimalarial [2], anti-inflammatory [3], antitumor [4], DNA binding capacity [5], and antibacterial properties [6]. Recently, quinoline has been used in the study of bio-organic and bio-organometallic processes [7]. There are many quinoline-based compounds which are known to exhibit anti-TB properties. Compound TMC207 [8] bearing a bulky biaryl side chain at position C3, is a highly potent anti-TB agent and is currently in phase II clinical trials. In particular, 2-chloroquinoline-3-carbaldehyde has been used as a key intermediate for the synthesis of variety of medicinally valuable compounds [9].

The substituted oxadiazoles are heterocyclic compounds, which serve both as biomimetic and reactive pharmacophores. It also act as key elements with potential biological activities [10] such as pesticidal [11], antiperipheral vasomotility [12], CNS stimulant, antiinflammatory, hypotensive [13], insecticidal [14], bactericidal [15], hypoglycemic [16], analgesic, anticonvulsive, antiemetic, diuretic [17], muscle relaxant [18], and fungicidal activities [19].


There are several methods for the synthesis of substituted 1,3,4-oxadiazole. The classical synthetic routes to substituted 1,3,4-oxadiazoles involve ring-forming reactions. Widely used methods are cyclodehydration of 1,2-diacylhydrazines with various reagents such as thionyl chloride, phosphorus oxychloride, poly phosphoric acid (PPA), or sulfuric acid [20], oxidation of N-acylhydrazones with different oxidizing agents [21] and direct reaction of acyl chlorides or carboxylic acids with hydrazine or acid hydrazides [22]. Another convenient method of 1,3,4-oxadiazole synthesis is the thermal recyclization of N-acyltetrazoles, which are commonly generated in situ from appropriate N-unsubstituted tetrazoles and acyl chlorides [23]. Preparative methods via ring-metalated 1,3,4-oxadiazoles are much less common because of the opening of the heterocycles. Thus, the synthesis of the substituted 1,3,4-oxadiazoles via lithium derivative was described for the first time only several years ago [24].

In our continuous program in the search of new potent and safe synthesis of biologically active heterocycles [25,26], we have planned to synthesize some new series of various substituted 2-(*p*-tolyloxy)-3-(5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl)quinoline by oxidative cyclisation of N-((2-(*p*-tolyloxy)quinoline-3-yl)methylene)isonicotinohydrazide using DMSO/I₂ and evaluating their antibacterial

Synthesis and Antibacterial Activity of Novel Series of 2-(*p*-Tolyloxy)-3-(5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl)quinoline

873

Scheme 1

activity against the standard drug Streptomycin and Ampicillin.

RESULTS AND DISCUSSION

Chemistry. The synthetic work was carried out beginning from 2-chloro-3-formylquinoline (1a-j) according to Scheme 1. The reaction of 2-chloro-3-formylquinoline (1aj) with *p*-cresol in presence of K_2CO_3/N_N -dimethylmethanamide (DMF) at 80-90°C for 4-5 h gave substituted 2-(ptolyoxy)quinoline-3-carbaldehyde (2a-j). Further reaction of isonicotinohydrazide (3) with substituted 2-(p-tolyoxy)quinoline-3-carbaldehyde (2a-j) gave corresponding N'-((2-(p-tolyloxy)quinoline-3-yl)methylene)isonicotinohydrazide (4a-j) in acetic acid in ethanol at room temperature, followed by the oxidative cyclisation of N'-((2-(ptolyloxy)quinoline-3-yl)methylene)isonicotinohydrazide using DMSO and iodine at reflux condition gave our targeted product *i.e.*, substituted 2-(p-tolyloxy)-3-(5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl) (5a-j). All the synthesized compounds were characterized by their physical and spectral data (IR, ¹H-NMR, and Mass).

Spectral analysis. The structures of the synthesized compounds were confirmed by spectral analysis (IR, ¹H-NMR, and Mass). The IR spectrum of compound (**2a**) showed a peak at 1690 cm⁻¹ due to C=O stretch. In ¹H-NMR spectrum, it exhibited two singlets, one at δ 2.41 due to -CH₃ protons and second at δ 10.65 due to -CHO proton. Mass spectrum was consistent with assigned structure showing (M+1) peak at *m/z* = 264.1.

The structure of (4a) is interpreted from spectroscopic data, IR spectra of compound (4a) reveals absorption band in the region 1560 cm⁻¹ corresponding to -C=N stretching at 1640 cm⁻¹.

The ¹H-NMR spectra of (**4a**) exhibits a sharp singlet at δ 2.01 for —CH₃ and one broad singlet at δ 10.50 of —NH. The pyridine ring protons appeared doublet at δ 8.92 and 8.75, respectively. C₄- proton of quinoline nuclei appears as a singlet at δ 8.33. All other aromatic protons arise at respective position. The IR spectrum of compound (**5a**) showed absorption peak at 1576 cm⁻¹ due to C=N stretching vibrations. The absence of CO peak at 1640 cm⁻¹ confirms the formation of oxadiazole ring, its ¹H-NMR spectrum revealed a multiplet at δ 7.02–8.98 due to quinoline and pyridine ring protons. The physical data are summarized in Table 1.

Antibacterial activity. The antibacterial activities of the synthesized compounds were determined by the well-diffusion method [27]. In this work, two Gram-positive bacteria, *Bacillus subtilis* (ATCC 6633), *Staphylococcus aureus* (ATCC 25923) and two Gram-negative bacteria, *Salmonella typhimurium* (ATCC 23564), *Pseudomonas aeruginosa* (ATCC 27853) were used to investigate the antibacterial activities. The bacterial liquid cultures were prepared in fusion broth for their activity tests. The compounds were dissolved in DMSO at concentration of 1 mg mL⁻¹. Antibacterial activity of DMSO against the test organisms was investigated, and was found to be nil. Molten nutrient agar (15 cm³) kept at 45°C, was then poured into the Petri dishes and allowed to solidify. Ten millimeter diameter holes were

Physical data of the compounds (5a-j). Comp. No. R_3 Yield (%) M.P. (°C) R₁ R₂ 5a Η Η Η 68 121-124 5b CH₃ Η Η 72 135-136 5c Η CH₂ Η 67 127-129 5d Η Η CH₃ 74 140-142 5e OCH₃ Η Н 76 124-125 5f Η OCH₃ Η 64 130-131 5g Н Η OCH₃ 70 143-145 5h OC₂H₅ Η Η 73 147-149 OC_2H_5H 5i Η Η 69 141-142 Η Η OC₂H₅ 72 132-134 5j

 Table 1

 Physical data of the compounds (52-i)

then punched carefully using a sterile cork borer and completely filled with the test solutions. The plates were incubated for 24 h at 37°C. After 24 h, the inhibition zone that appeared around the holes in each plate was measured. Antibacterial activity was determined by measuring the diameter of inhibition zone and examining the minimal inhibitory concentration. Activity of each compound was compared with streptomycin and ampicillin as standards. The observed data of antibacterial activity of compounds and the standard drugs are given in Table 2. The compounds (5c), (5d), (5i), and (5j) show excellent antibacterial activity against Grampositive bacterial strains. Likewise, compounds (5a), (5b), (5f), and (5g) showed excellent activity against Gram-negative bacterial strains.

CONCLUSION

In this report, we have synthesized novel series of 2-(p-tolyloxy)-3-(5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl)-quinoline from N'-((2-(p-tolyloxy) quinoline-3-yl)methy-lene)isonicotinohydrazide which shows potent antibacte-

rial activity. Most of these compounds showed moderate antibacterial activity compared with commercially available drugs. Therefore, it becomes lead molecules for further synthetic and biological evaluation. It can be concluded that this class of compounds certainly holds a great promise toward pursuit to discover novel class of antibacterial agents. Further studies are being conducted to acquire more information about quantitative structure–activity relationships.

EXPERIMENTAL

Melting points were recorded in an open capillary in liquid paraffin bath and are uncorrected. The progress of reaction was monitored by thin layer chromatography using silica gel (Merck). IR spectra were recorded on a SHIMADZU–FT-IR spectrophotometer in KBr disc. ¹H-NMR spectra were recorded on BRUKER ADVANCE–II 400 NMR spectrophotometer in DMSO- d_6 as a solvent and tetramethyl silane (TMS) as an internal standard. Peak values are shown in δ ppm. Mass spectra were recorded on a PEP-SCIUX-APIQ pulsar (electron preionization) mass spectrometer. Elemental analyses were performed on Perkin-Elmer EAL-240 elemental analyzers.

General procedure for the synthesis of 2-(*p*-tolyloxy)quinoline-3-carbaldehydes (2a-j). To the mixture of *p*-cresol (3.7 g, 0.034 mol) and K_2CO_3 (12.8 g, 0.093 mol) in DMF, compound 1a (6 g, 0.031 mol) was added, and the reaction mixture was stirred at 80–90°C for 4–5 h. The completion of the reaction was monitored on TLC. After completion of the reaction, ice cold water (50 mL) was poured on the reaction mixture, and the solid thus obtained was filtered off and washed with water, further the compound was recrystallized in ethyl acetate.

2-(*p*-tolyloxy)quinoline-3-carbaldehyde (2a). IR (KBr, cm⁻¹): 1690 (C=O), 1610 (C=N), 1525 (C=C); ¹H-NMR-(400 Hz, DMSO- d_6): δ 10.65 (s, 1H, -CHO), 8.72 (s, 1H, Ar-H), 7.89 (d, J = 8 Hz, 1H, Ar-H), 7.73 (d, J = 8 Hz, 1H, Ar-H), 7.70 (t, 1H, Ar-H), 7.45 (t, 1H, Ar-H), 7.27 (d, J = 8 Hz, 2H, Ar-H), 7.18 (d, J = 8 Hz, 2H, Ar-H), 2.41 (s, 3H, -CH₃); ES-MS (*m*/*z*): 264.4 (M+1).

Table 2

Tested compounds	B. subtili ZI ^a (MIC) ^b	S. aureus ZI ^a (MIC) ^b	S. typhi ZI ^a (MIC) ^b	P. aeroginosa ZI ^a (MIC) ^b
5a	13.2 (15)	13.5 (15)	14.8 (10)	14.5 (10)
5b	13.8 (15)	13.3 (15)	15.1 (10)	14.9 (10)
5c	14.3 (10)	14.1 (10)	12.8 (15)	12.7 (15)
5d	15.1 (10)	14.7 (10)	13.5 (15)	13.4 (15)
5e	14.8 (10)	14.6 (10)	12.9 (15)	12.8 (15)
5f	13.1 (15)	13.6 (15)	14.2 (10)	14.0 (10)
5g	13.4 (15)	13.7 (15)	15.1 (10)	14.8 (10)
5h	13.1 (15)	13.2 (15)	11.1 (20)	10.4 (20)
5i	14.1 (10)	14.6 (10)	12.2 (15)	12.6 (15)
5j	15.6 (10)	15.3 (10)	11.7 (15)	11.2 (15)
Streptomycin	15.1 (10)	14.9 (10)	16.4 (5)	16.1 (5)
Ampicillin	14.3 (10)	14.7 (10)	16.3 (5)	15.9 (5)

The minimum inhibitor concentrations of tested compounds (5a-j) in $\mu g/mL$.

^a Zone of inhibition.

^b Minimum inhibitory concentration in µg/mL.

General procedure for the synthesis of (E)-N'-((2-tolyloxy) quinoline-3-yl)methylene)isonicotinohydrazide (4a-j). An equimolar mixture of 2-chloro-3-formyl quinoline (1a) (0.004 mol) and isonicotinohydrazide (3) (0.004 mol) in 10 mL ethanol containing few drops of glacial acetic acid was stirred at room temperature. After completion of reaction (checked by TLC), the excess of solvent was removed on rotary evaporator to yield solid which was washed with petroleum ether followed by crystallization from ethanol.

(*E*)-*N*'-((2-tolyloxy) quinoline-3-yl) methylene)isonicotinohydrazide (4a). **IR** (KBr, cm⁻¹): 2980 (NH), 1560 (C=N), 1513 (C=C); ¹H-NMR- (400 Hz, DMSO-*d*₆): δ 10.72 (s, 1H, --NH), 8.90 (s, 1H), 8.77 (d, *J* = 7.92 Hz, 3H, Ar-H), 7.75– 7.80 (m, 4H, Ar-H), 7.26 (t, *J* = 10.94 Hz, 2H, Ar-H), 7.19 (dd, *J* = 8.21 and 4.24 Hz, 4H, Ar-H) 2.30 (s, 3H, Ar-CH₃), **ES-MS** (*m*/*z*): 383 (M+1); **Anal. Calcd.** C₂₃H₁₈N₄O₂ C, 72.24; H, 4.74; N, 14.65, found C, 72.22; H, 4.80; N, 14.56%.

(*E*)-*N*'-((2-tolyloxy)-6-ethoxyquinoline-3-yl)methylene)isonicotinohydrazide (**4h**). **IR** (KBr, cm⁻¹): 3009 (—NH), 1577 (C=N), 1510 (C=C); ¹H-NMR- (400 Hz, DMSO-*d*₆): δ 10.79 (s, 1H, —NH), 8.92 (s, 1H), 8.73 (d, *J* = 8.21 Hz, 2H, Ar-H) 7.84–7.89 (dd, 4H, Ar-H), 7.21 (t, *J* = 11.30 Hz, 2H, Ar-H), 7.16 (dd, *J* = 8.44 and 4.66 Hz, 4H, Ar-H), 2.67 (s, 3H, Ar-CH₃), 1.41 (s, 3H, —CH₃); **ES-MS** (*m*/*z*): 427 (M+1); **Anal. Calcd.** C₂₅H₂₂N₄O₃ C, 70.41; H, 5.20; N, 13.14, found C, 70.43; H, 5.30; N, 13.21%.

General procedure for the synthesis of substituted 2-(ptolyloxy)-3-(5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl)quinoline (5a-j). (0.1 g, 0.00028 mol) of N'-((2-(p-tolyloxy)quinoline-3-yl)methylene)isonicotinohydrazide (4a) was dissolved in 10 mL of DMSO. To this reaction mixture, catalytic amount of iodine was added. The reaction mixture was heated in an oil bath for 3-4 h at 120°C and left for overnight. 10-mL ice cold water was slowly added to the flask and the separated product was filtered and washed with water. Further reaction mass washed with dil sodium thiosulphate solution for several times. It was again washed with water dried under vacuum. The residue was subjected to column chromatography (60-120 mesh size silica gel) eluted with hexane-ethyl acetate (80:20) to obtain the pure product. The compounds (5a-j) were prepared by following the above procedure and their percentage yield and physical constants were recorded in Table 1. Their structures have been confirmed by IR ¹H-NMR and mass spectra.

2-(*p*-tolyloxy)-3-(5-(*pyridin*-4-yl)-1,3,4 oxadiazol-2yl)quinoline (**5a**). **IR** (KBr, cm⁻¹): 2930 (C—H), 1577 (C=N); ¹H-NMR (400 Hz, DMSO-*d*₆): δ ppm 8.73 (s, 1H), 8.69 (d, *J* = 8.9 Hz, 2H, Ar-H) 7.72–7.65 (m, 4H, Ar-H), 7.30 (t, *J* = 11.76 Hz, 2H, Ar-H), 7.12 (dd, *J* = 8.3, 3.92 Hz, 4H, Ar-H), 2.87 (s, 3H, Ar-CH₃); **ES-MS** (*m*/*z*): 381 (M+1); **Anal. Calcd.** C₂₃H₁₆N₄O₂ C, 72.62; H, 4.24; N, 14.73, found C, 72.59; H, 4.29; N, 14.71%.

2-(*p*-tolyloxy)-6-methyl-3-(5-(*pyridin*-4-*yl*)-1,3,4 oxadiazol-2yl)quinoline (**5b**). **IR** (KBr, cm⁻¹): 2945 (C–H), 1565 (C=N); ¹H-NMR (400 Hz, DMSO-*d*₆): δ ppm 8.82 (s, 1H), 8.65 (d, *J* = 9.29 Hz, 2H, Ar-H), 7.67–7.62 (m, 3H, Ar-H), 7.21 (t, *J* = 12.23 Hz, 2H, Ar-H), 7.02 (dd, *J* = 8.43 and 4.12 Hz, 4H, Ar-H), 2.83 (s, 3H, Ar-CH₃); **ES-MS** (*m*/*z*): 395 (M+1); **Anal. Calcd.** C₂₄H₁₈N₄O₂C, 73.08; H, 4.60; N, 14.20, found C, 73.12; H, 4.67; N, 14.30%.

2-(*p*-tolyloxy)-7-methyl-3-(5-(*pyridin-4-yl*)-1,3,4- oxadiazol-2yl)quinoline (5c). IR (KBr, cm⁻¹): 2935 (C–H), 1555 (C=N); ¹H-NMR (400 Hz, DMSO-d₆): δ ppm 8.70 (s, 1H),

8.62 (d, J = 10.12 Hz, 2H, Ar-H), 7.69–7.84 (m, 3H, Ar-H), 7.32 (t, J = 1.45 Hz, 2H, Ar-H), 7.10 (dd, J = 9.21 and 3.14 Hz, 4H, Ar-H), 2.65 (s, 3H, Ar-CH₃), 2.34 (s, 3H, Ar-CH₃); **ES-MS** (*m*/*z*): 395 (M+1); **Anal. Calcd.** C₂₄H₁₈N₄O₂ C, 73.08; H, 4.60; N, 14.20, found C, 73.10; H, 4.62; N, 14.23%.

2-(*p*-tolyloxy)-7-methoxy-3-(5-(*pyridin*-4-yl)-1,3,4- oxadiazol-2yl)quinoline (**5f**). **IR** (KBr, cm⁻¹): 2925 (C–H), 1570 (C=N); **¹H-NMR** (400 Hz, DMSO-*d*₆): δ ppm 8.85 (s, 1H), 8.76 (d, *J* = 9.2 Hz, 2H, Ar-H), 7.63–7.82 (m, 3H, Ar-H), 7.25 (t, *J* = 12 Hz, 2H, Ar-H), 7.08 (dd, *J* = 8 and 4.2 Hz, 4H, Ar-H), 3.82 (s, 3H, Ar-OCH₃), 2.93 (s, 3H, Ar-CH₃); **ES-MS** (*m*/z): 411 (M+1); **Anal. Calcd.** C₂₄H₁₈N₄O₃ C, 70.23; H, 4.42; N, 13.65, found C, 70.27; H, 4.47; N, 13.70%.

2-(*p*-tolyloxy)-6-methoxy-3-(5-(*pyridin*-4-*y*l)-1,3,4 oxadiazol-2*y*l)quinoline (**5g**). **IR** (KBr, cm⁻¹): 2932 (C–H), 1562 (C=N); ¹**H**-**NMR** (400 Hz, DMSO-*d*₆): δ ppm 8.80 (s, 1H), 8.66 (d, *J* = 8.6 Hz, 2H, Ar-H), 7.82–7.92 (m, 3H, Ar-H), 7.39 (t, *J* = 11.78 Hz, 2H, Ar-H), 7.21 (dd, *J* = 7.9 and 3.9 Hz, 4H, Ar-H) 3.64 (s, 3H, Ar-OCH₃), 2.02 (s, 3H, Ar-CH₃); **ES-MS** (*m*/*z*): 411 (M+1); **Anal. Calcd.** C₂₄H₁₈N₄O₃ C, 70.23; H, 4.42; N, 13.65, found C, 70.21; H, 4.46; N, 13.68%.

2-(*p*-tolyloxy)-6-ethoxy-3-(5-(*pyridin*-4-*y*))-1,3,4 oxadiazol-2*y*))quinoline (**5h**). **IR** (KBr, cm⁻¹): 2950 (C–H), 1547 (C=N); **¹H-NMR** (400 Hz, DMSO-*d*₆): δ ppm 8.89 (s, 1H), 8.70 (d, *J* = 8.21 Hz, 2H, Ar-H), 7.71–7.75 (m, 3H, Ar-H), 7.34 (t, *J* = 12.17 Hz, 2H, Ar-H), 7.09 (dd, *J* = 9 and 4.34 Hz, 4H, Ar-H), 2.87 (s, 3H, Ar-CH₃), 1.43 (s, 3H, -CH₃); **ES-MS** (*m*/*z*): 425 (M+1); **Anal. Calcd.** C₂₅H₂₀N₄O₃ C, 70.74; H, 4.75; N, 13.20, found C, 70.80; H, 4.79; N, 13.18%.

2-(*p*-tolyloxy)-8-ethoxy-3-(5-(*p*yridin-4-yl)-1,3,4-oxadiazol-2yl)quinoline (**5j**). **IR** (KBr, cm⁻¹): 2954 (C–H), 1544 (C=N); ¹**H**-**NMR** (400 Hz, DMSO-d₆): δ ppm 8.91 (s, 1H), 8.72 (d, J =8.28 Hz, 2H, Ar-H), 7.74–7.78 (m, 3H, Ar-H), 7.38 (t, J = 11.92 Hz, 2H, Ar-H), 7.07 (dd, J = 8.98 and 4.31 Hz, 4H, Ar-H), 3.90 (q, 2H, -OCH₃), 2.67 (s, 3H, Ar-CH₃), 1.21 (s, 3H, -CH₃); **ES-MS** (*m*/*z*): 425 (M+1); **Anal. Calcd.** C₂₅H₂₀N₄O₃, C, 70.74; H, 4.75; N, 13.20, found C, 70.78; H, 4.80; N, 13.23%.

Acknowledgments. The authors are thankful to The Head, Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, for his valuable support and laboratory facilities and RSJ is thankful to University Grants Commission, New Delhi, for awarding the fellowship.

REFERENCES AND NOTES

Mccormick, J. L.; Mckee, T. C.; Cardellina, J. H.; Boyd,
 M. R. J Nat Prod 1996, 59, 469; (b) Chen, I. S.; Chen, H. F.; Cheng,
 M. J.; Chang, Y. L.; Teng, C. M.; Tsutomu, I.; Chen, J. J.; Tsai, I. L.
 J Nat Prod 2001, 64, 1143; (c) Nadaraj, V.; Selvi, S. T.; Sasi, R. Arkivoc 2006, x, 82.

[2] Craig, J. C.; Person, P. E. J Med Chem 1971, 14, 1221.

[3] Dillard, R. D.; Pavey, D. E.; Benslay, D. N. J Med Chem 1973, 16, 251.

[4] Sukhova, N. M.; Lidak, M.; Zidermane, A.; Pelevina, I. S.; Voronia, S. S. Khim Farm Zh 1989, 23, 1226.

[5] Atwell, G. J.; Bangaley, B. C.; Denny, W. A. J Med Chem 1989, 32, 396.

[6] Patel, H. V.; Vyas, K. V.; Fernandes, P. S. Ind J Chem 1990, 29(B), 836.

[7] Saito, I.; Sando, S.; Nakatani, K. Bioorg Med Chem 2001, 9, 2381.

[8] Andries, K.; Verhasselt, P.; Guillemont, J.; Goehlmann, H. W. H.; Neefs, J. M.; Winkler, H.; Van Gestel, J.; Timmerman, P.; Zhu, M.; Lee, E.; Williams, P.; De Chaffoy, D.; Huitric, E.; Hoffner, S.; Cambau, E.; Truffot-Pernot, C.; Lounis, N.; Jarlier, V. A. Science 2005, 307, 223.

[9] (a) MethCohn, O.; Narine, B.; Tarnowski, B.; Hayes, R.; Keyzad, A.; Rhouti, S.; Robinson, A. J Chem Soc Perkin Trans 1981, 1, 2509; (b) Bhaduri, A. P. Synlett 1990, 557.

[10] (a) Ansel, P. S. U.S. Pat. 2,883,391 (1959); (b) Joseph, J.
 P.; Harry, L.Y. U.S. Pat. 3,141,022 (1961); (c) Hokfelt, B.; Jonsson,
 A. J Med Chem 1962, 5, 247.

[11] Hiroshi, K.; Isaq, H.; Shigeki, O. Zassokenkyn 1969, 8, 46.

[12] Derappe, C.; Rips, R.; Albert, O.; Aurousseau, M. Chim Ther 1968, 3, 181.

[13] Deshmukh, A. A.; Sattur, P. B.; Sheth, U. K. Indian J Exp Biol 1976, 4, 166.

[14] Sen Gupta, A. K.; Garg, M.; Chandra, U. J Indian Chem Soc 1979, 56, 1230.

[15] Chiyomaru, I.; Takita, K.; Ito, H. (to Kumiai Chem. Ind. Co. Ltd.). Jpn. Pat. 7207549 (1972).

[16] (a) Neal, J. B.; Rosen, H.; Russel, P. B.; Adams, A. C.; Blumenthal, A. J Med Pharm Chem 1962, 5, 617. (b) Kurzer, F. Org Compd Sul Sele Tellu 1974, 4, 417.

[17] Thomas, J. Ger. Pat. 2403357 (1974).

[18] (a) Yale, H. L.; Losee, K. J Med Chem 1966, 9, 478; (b) Turner, S. Ger. Pat. 2727146 (1978).

[19] (a) Singh, H.; Yadav, L. D. S. Agric Biol Chem 1976, 40, 759; (b) Misato, T.; Ko, K.; Honma, Y.; Konno, K.; Taniyama, E. Inst Phys Chem Res Jpn. Pat. 772508 (1977).

[20] (a) Al-Talib, M.; Tashtoush, H.; Odeh, N. Synth Commun
1990, 20, 1811; (b) Kerr, V. N.; Ott, D. G.; Hayes, F. N. J Am Chem
Soc 1960, 82, 186; (c) Short, F. W.; Long, L. M. J Heterocycl Chem
1969, 6, 707; (d) Klingsberg, E. J Am Chem Soc 1958, 80, 5786;
(e) Reddy, C. K.; Reddy, P. S. N.; Ratnam, C. V. Synthesis 1983, 842.

[21] (a) Balachandran, K. S.; George, M. V. Tetrahedron 1973,
29, 2119; (b) Yang, R. Y.; Dai, L. X. J Org Chem 1993, 58, 3381;
(c) Chiba, T.; Okimoto, M. J Org Chem 1992, 57, 1375.

[22] (a) Tandon, V. K.; Chhor, R. B. Synth Commun 2001, 31, 1727; (b) Mashraqui, S. H.; Ghadigaonkar, S. G.; Kenny, R. S. Synth Commun 2003, 33, 2541; (c) Bentiss, F.; Lagrenee, M.; Barbry, D. Synth Commun 2001, 31, 935; (d) Kangani, C. O.; Kelley, D. E.; Day, B. W. Tetrahedron Lett 2006, 47, 6497; (e) Zarudnitskii E. V.; Pervak, I. I.; Merkulov, A. S.; Yurchenko, A. A.; Tolmachev, A. A.; Tetrahedron 64, 2008, 10431.

[23] (a) Fürmeier, S.; Metzger, J. O. Eur J Org Chem 2003, 885;
(b) Semenov, B. B.; Smushkevich, Yu. I. Izv Akad Nauk Ser Khim 2002, 334; Russ Chem Bull (Engl. Transl.) 2002, 51, 357; (c) Huisgen, R.; Sauer, J.; Sturm, H. J. Angew Chem 1958, 70, 272.

[24] (a) Ohmoto, K.; Yamamoto, T.; Okuma, M.; Horiuchi, T.; Imanishi, H.; Odagaki, Y.; Kawabata, K.; Sekioka, T.; Hirota, Y.; Matsuoka, S.; Nakai, H.; Toda, M.; Cheronis, J. C.; Spruce, L. W.; Gyorkos, A.; Wieczorek, M. J Med Chem 2001, 44, 1268; (b) Ohmoto, K.; Yamamoto, T.; Horiuchi, T.; Kojima, T.; Hachiya, K.; Hashimoto, S.; Kawamura, M.; Nakai, H.; Toda, M. Synlett 2001, 299; (c) Rydzewski, R. M.; Burrill, L.; Mendonca, R.; Palmer, J. T.; Rice, M.; Tahilramani, R.; Bass, K. E.; Leung, L.; Gjerstad, E.; Janc, J. W.; Pan, L. J Med Chem 2006, 49, 2953.

[25] (a) Joshi, R. S.; Mandhane, P. G.; Diwakar, S. D.; Gill, C. H., Ultrason Sonochem 2010, 17, 298; (b) Mandhane, P. G.; Joshi, R. S.; Nagargoje, D. R.; Gill, C. H.; Tetrahedron Lett 2010, 51, 1490;
(c) Kale, R. P.; Jadhav, G. R.; Shaikh, M. U.; Gill, C. H. Tetrahedron Lett 2009, 50, 1780; (d) Jadhav, G. R.; Kale, R. P.; Shaikh, M. U.; Gill, C. H. Chin Chem Lett 2009, 20, 292; (e) Jadhav, G. R.; Kale, R. P.; Shaikh, M. U.; Sill, C. H.; Chin Chem Lett 2009, 20, 535.

[26] (a) Joshi, R. S.; Mandhane, P. G.; Diwakar, S. D.; Dabhade,
S. K. Gill, C. H. Bioorg Med Chem Lett 2010, 20, 3721; (b) Joshi, R.
S.; Mandhane, P. G.; Gill, C. H. Bull Korean Chem Soc 2010, 31, 8;
(c) Diwakar, S. D.; Bhagwat, S. S.; Shingare, M. S.; Gill, C. H. Bioorg
Med Chem Lett 2008, 18, 4678; (d) Jadhav, G. R.; Shaikh, M. U.;
Shingare, M. S.; Gill, C. H. J Heterocycl Chem 2008, 45, 1287;
(e) Jadhav, G. R.; Shaikh, M. U.; Kale, R. P.; Shiradkar, M.; Gill, C.
H. Eur J Med Chem 2009, 44, 2930.

[27] Christine, H. F.; Michael, H. C. Antimicrob Agents Chemother 1986, 29, 386.